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7.1   Organic Field-Effect Transistors



Transistors
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Transistor
Bipolar Junc9on Transistor (BJT, current controlled device)

Field Effect Transistor (FET, voltage controlled device)

Thin Film Transistor (TFT) 
all ac+ve components  

deposited onto an insula+ng substrate 
displays, RFID-tags

‘Classical’ FET 
typically single-crystalline semiconductor 

serves as substrate 
logic circuits, computer processors

• organic field-effect transistors (OFETs) are thin film transistors from organic semiconductors

• transistors (derived from “transfer resistor”) are electronic switches or amplifiers



General Setup of a Thin Film Transistor
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• three-terminal device: source, drain, and gate electrodes 
• gate electrode (voltage) is used to switch (on/off) a source-drain current 
• source, drain, and gate electrodes typically made of Au, Ag, Al, ITO, PEDOT:PSS, etc. 
• dielectric typically metal oxides (Al2O3, HfO2, SiO2) or organic insulators (PMMA, SAMs)

• all ac9ve layers are deposited as thin films onto a substrate (hence, thin film transistor, TFT)
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DrainSource
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KEY CONCEPT

Working Principle of a Thin Film Transistor (TFT)
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• VG creates plate capacitor, charge accumula9on at the semiconductor-dielectric interface 
• organic semiconductor is doped by field effect (towards/beyond insulator-metal threshold) 
• at VD = 0 charge carriers are uniformly distributed over the whole semiconductor

• electric charge per area   , typical value in on-state 1014  e/cm2 or 1 e/nm2 

• capacitance per area  , vacuum permifvity  = 8.85 · 10−12 F/m, dielectric constant 

(rela+ve permifvity)   of the gate dielectric, dielectric layer thickness d

Q = C ∝ VG

C = μ0μr /d μ0
μr
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KEY CONCEPT

Response of an OFET in the Linear Regime
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• applying VD leads to charge flow between source and drain (drain current ID)  
• for |VD | ≪ |VG – Vth|  charge carriers remain uniformly distributed over the whole channel 
• ini9ally Ohm beavior, linear increase of the drain current ID with VD (linear regime) 
• cri9cal is charge injec9on from the source/drain electrodes into bulk organic semiconductor
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KEY CONCEPT

Response of an OFET in the Transi9on Regime
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• at |VD| ≈ |VG – Vth|  charge carrier distribu9on not uniform across channel anymore 
• drain current ID does not increase linearly with VD (transi9on regime)
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KEY CONCEPT

Response of an OFET in the Satura9on Regime
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• at |VD| > |VG – Vth|  charge carrier distribu9on is highly unsymmetric over the channel 
• drain current ID saturates and does not increase with VD (satura9on regime)
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Output Curve Transfer Curve

OFET Characteriza9on
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• output characteris9cs from measuring ID as a func9on of VD, at a fixed VG  
• transfer characteris9cs from measuring ID as a func9on of VG, at a fixed VD  
• gate current IG is unwanted “leakage current” through the gate dielectric

• as VG and VD can be varied, two different current-voltage characteris+cs can be recorded:
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H. Klauk, Chemical Society Reviews 2010, 39, 2643. 

OFET Characteriza9on
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• channel length L = distance between the source and drain electrodes 
• channel width W lateral width of the source and drain electrodes 
• capacitance per area C, charge carrier mobility µ

• as VG and VD can be varied, two different current-voltage characteris+cs can be recorded:
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H. Klauk, Chemical Society Reviews 2010, 39, 2643. 

Parameters from Transfer Curves
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• on/off-ra9o, drain current ID in on versus off state, should ideally be >106 

• charge carrier mobility μ, relevant for switching speed should be >1 cm2 V–1 s–1 
• threshold voltage Vth, voltage required for switching; should be as low as possible 
• gate current IG (parasi9c current, leakage current), should be on order of ID in off-state
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H. Klauk, Chemical Society Reviews 2010, 39, 2643. 

Device Geometries
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• bo\om gate setups oêen used, because semiconductor deposi9on is one of the last steps 
• oêen used in research: heavily doped Si wafer + SiO2 layer (= gate electrode + dielectric) 
• source/drain electrodes are oêen made of gold
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Device Fabrica9on
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• semiconductor and electrodes can be deposited thermally: physical vapor deposi9on 
• semiconductor can be deposited from solu9on (spin coa9ng, drop cas9ng, doctor blading…) 
• annealing required aêer solu9on process to allow for be\er molecular arrangement 
• pa\erning via shadow masking or lithography
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What Real Devices Look Like
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• examples of OFETs with Al gate electrode, Al2O3 dielectric and gold electrodes
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Device Characterisa9on Setup
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• electrodes are contacted with small needles, transfer and output characteris9cs are measured



V. C. Sundar et al., Science 2004, 303, 1644

Examples of OFET Research: Rubrene Single Crystal
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• flexible “stamp” device that can be reversibly stuck on rubrene single crystal 
• anisotropy in mobility since anisotropy in crystal structure

PDMS

Au (duc+le)

Au (duc+le)

PDMS
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7.2   Organic Photovoltaic Devices
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• it is not a ques9on if, just when will oil be replaced as our main source of energy



Puyng our Energy Consump9on into Historic Perspec9ve
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2000 BC 2000

oil, coal, gaswood something else

3000 4000 5000 600001000 BC 1000
year

• in a broader historic perspec9ve, burning of fossil fuels was just a short (catastrophic) aberra9on



Perez et al., 2009, "A Fundamental Look At Energy Reserves For The Planet" 

Energy Totally Available on Planet Earth
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• solar energy has a the poten9al to supply the complete world energy consump9on!



Solar Energy Conversion Methods
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• several possibili9es for conver9ng solar energy into usable forms of energy 
• including “indirect” energy genera9on from wind or hydropower 
• photovoltaics is the direct conversion of solar energy to electricity

photochemical  
ar+ficial photosynthesis

photovoltaics 
solar-electric conversion

photothermal 
solar power plant



hbp://www.nrel.gov

Solar cell efficiencies

322



Organic Solar Cells
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• silicon-based photovoltaic modules are efficient but energe9cally & economically expensive 
• organic photovoltaics may be inexpensive, energe9cally more favorable alterna9ves

• total energy consump+on 5⋅1020 J/year in 2008; solar energy supply 4⋅1024 J/year 
• one hour of sun light ≥ overall annual global energy consump+on



Bäuerle, Angew. Chem. Int. Ed. 2012, 51, 2020;   Snaith Nat. Photon. 2012, 6, 337.

Solar Spectrum and Standardized Ligh9ng Condi9ons

324

• Xenon lamp plus filters as a light source matched to the (terrestrial) solar spectrum 
• J-V curves are measured under AM 1.5 G solar spectrum (AM = air mass, G = global)  
• AM 1.5 G spectrum represents the annual average solar irradiance at mid-la9tudes (US)

• solar cells need to be tested under standardized ligh+ng condi+ons for comparibility
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Bäuerle et al., Angew. Chem. Int. Ed. 2012, 51, 2020.

Device Characteris9cs
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• short circuit current JSC is “maximum current” in the absence of a resistance / voltage 
• open circuit voltage VOC is “available poten9al” limited by ELUMO(acceptor) – EHOMO(donor)  
• JSC, VOC, and FF must be large because maximum power output Pout = JSC • VOC • FF

• J-V curve measured in dark (blue) and under illumina+on of AM 1.5 G solar spectrum (red) 

• Characteris+c parameters: 
• short circuit current JSC 
• open circuit voltage VOC 

• maximum power output Pout  
• fill factor FF 
• power conversion efficiency η



General Setup and Working Principle of a Solar Cell
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• light is absorbed in semiconductor layer 
• an electron-hole pair is generated 
• electron and hole are transported to separate electrodes and extracted
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Light



Difference Between Inorganic and Organic Materials
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• Coulomb force between two charge carriers:  

 

• inorganic materials: high permiyvity and weak electron-vibra9on coupling (fixed layce) 

εr ≃12   light absorp+on results in separated charges 

• organic materials: low permiyvity, strong electron-vibra9on coupling (geometric relaxa9on) 

εr ≃ 2–3  light absorp+on results in excitons (strongly bound e–/h+ pairs) 

• donor-acceptor (p-n) interface is required to separate charges in organic semiconductors!

F = q1q2
4ψμ0μrr2



KEY CONCEPT

Mechanism for Charge Genera9on in Heterojunc9on Solar Cells

328

(1) light absorp9on, exciton forma9on 
(2) exciton diffusion to interface (≃10 nm) 
(3) charge separa9on 
(4) charge migra9on to the electrodes
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• low bandgap polymer donor materials:

Mazzio & Luscombe, Chem. Soc. Rev. 2015, 44, 78.

Typical Donor Materials
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• electron-rich (p type) organic semiconductors

• classical polymer donor materials:



Le+an Dou, Adv. Mater. 2013, 25, 6642. 

Typical acceptor materials
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• electron-poor (n-type) organic or polymer semiconductors 

• best results so far with fullerene deriva+ves

• other acceptor materials



Exciton Diffusion and Charge Separa9on
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Exciton diffusion length ≈ 10 nm

(donor)

(acceptor)



Role of the Donor-Acceptor Microstructure
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single layer 

1st cell in 1978: 0.001%

bilayer 

first in 1986: 1%

bulk heterojunc9on 

first in 1995 

today: >10%

• due to match with diffusion length of excitons and large interface, bulk heterojunc9ons yield so 
far best performance

332
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Watkins, Chem. Mater. 2012, 24, 622; Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58 

Inherent Problem with BHJs
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• low but finite miscibility of the two materials 
• miscible at high temperatures, but phase separa+on by spinodal decomposi+on upon cooling 

• spinodal decomposi+on is diffusion-limited process that results in bicon+nuous structure 

• further cooling “freezes” the diffusion process, kine+cally controlled microstructure 

• inherent problems from a kine9cally controlled microstructure: 
• morphology is hard to control  

• resul+ng morphology not thermodynamically stable (only metastable)

2 µm 2 µm

P3HT/PCBM 1:1 mix before / aSer 1h @140C̊



Yin & Dadmun, ACS Nano 2011, 5, 4756; Mazzio & Luscombe, Chem. Soc. Rev. 2015, 44, 78.

Mixed Phase in Bulk Heterojunc9on

334

• PCBM is about 20% miscible in P3HT, resul9ng in a three-phase system: 
• ultrafast charge separa+on occurs in mixed amorphous P3HT/PCBM phase 

• directed transport following chemical poten+al microgradients 

• ideally “arborescent structure” of crystalline P3HT and crystalline PCBM phases



Mazzio & Luscombe, Chem. Soc. Rev. 2015, 44, 78; Gang, Nat. Mater. 2005, 4, 864. 

Quantum Efficiencies

335

• the EQE describes the overall efficiency of the four main photophysical processes 

• external quantum efficiency EQE(λ): photogenerated charges per incident photons

Light source Monochromator

Reference cell

Investigated
Solar cell

Electrometer

Beam 
splitter

EQE(λ) = ηabs(λ) · ηdiff (λ) · ηCT (λ) · ηcoll(λ)

EQE(λ) = ηabs(λ) · ηdiff (λ) · ηCT (λ) · ηcoll(λ)

EQE(λ) = ηabs(λ) · ηdiff (λ) · ηCT (λ) · ηcoll(λ)

EQE(λ) = ηabs(λ) · ηdiff (λ) · ηCT (λ) · ηcoll(λ)

EQE(λ) = ηabs(λ) · ηdiff (λ) · ηCT (λ) · ηcoll(λ)

photoabsorp+on efficiency 

exciton diffusion efficiency  

charge transfer efficiency 

charge collec+on efficiency



Normal and Inverted Device Structure
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• one electrode inevitably needs to be transparent! 
• work func9ons of electrodes & blocking layers should match ELUMO(acceptor), EHOMO(donor)  
• benefit of inverted device layout: no need for low work func9on metals as cathode
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Shockley, Queisser, J. Appl. Phys. 1961, 32, 510.  

Limits of Single Cell Devices
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• large bandgap mean higher usable poten9al (aêer thermal relaxa9on), but all photons below 
bandgap energy are wasted 

• smaller band gap means that more photons can be absorbed (even at higher wavelengths), but all 
excess energy of photons with higher energy than band gap is wasted (due to “internal conversion”) 

• Shockley-Queisser limit of power conversion efficiency for single cell      
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Thomas R. Andersen et al. (2014) Energy & Environmental Science, 7(9), 2925.

Prin9ng of Mul9layer Polymer Solar Cells
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• fully printed solar cells, even electrodes are printed 
• solvent must not a\ack the underlying layers

• roll-to-roll solu+on process for organic solar cells



hbp://m.eet.com/media/1167154/fraunhofer_fig1.jpg

Vacuum Processing of Organic Solar Cells
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• whole process in vacuum chamber 
• no problems with dissolving the underlying layers 
• vapor phase processing enables the fabrica9on of gradual interfaces 
• accurate control over layer thickness and molecular composi9on

• roll-to-roll vacuum process for organic solar cells



Literature
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7.3   Organic Light-Emiyng Diodes



Perspec9ves for Organic Light Emiyng Diodes (OLEDs)

342

• low-cost, large-area processing, lightweight, ultrathin, flexible applica9ons, high efficiencies 
• challenges remain in terms of life9me, color balance, and lower produc9on costs

• two-terminal devices from organic semiconductors that emit light upon electric current 
• used for displays and ligh+ng devices

Ligh+ng Displays Transparent



Energy Diagram of a Monolayer Device
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• charge carriers can only be injected and moved if a voltage is applied between the electrodes

• organic light emifng diodes generate light by electrical excita+on 
• this can be achieved by sandwiching a suitable organic material between two electrodes
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1.)  charge carrier injec+on 

2.)  charge carrier transport 

3.)  exciton forma+on 

4.)  radia+ve exciton decay

E

LUMO 

HOMO 

Applied Voltage

Anode Emifng Layer Cathode 

Basic Working Principle of OLEDs
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• in a monolayer device all basic steps take place in the same organic layer 
• low probability for exciton forma9on

• electroluminescence in organic solids requires for basic steps:

Basic Steps
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KEY CONCEPT

Energy Diagram of a Double-Layer Device
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• hole and electron transport are separated in two different layers 
• holes and electrons form excitons in a confined volume at one side of the interface
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Energy Diagram of a Mul9layer Device

346

• state of the art high performance OLEDs are based on a mul9layer structure

• charge injec+on and transport as well as emission takes place in different layers 
• each layer op+mized for its specific func+on to maximize the overall performance
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S. Kim, Appl. Phys. LeI. 2007, 90, 223505

Impact of Electron Blocking Layer

347

• electron blocking layer increases the efficiency of a green OLED by more than three 9mes 
• intersystem crossing (ISC) is a non-radia9ve transi9on under spin inversion 
• the much larger 9me scale of phosphorescence is caused by “spin-forbidden" relaxa9on

• charge blocking layers increases efficiency by confining the charges to the emission layer
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• low produc9on cost, large area processing 
• low temperature-solvent based manufacturing technique 

thin evaporated 
organic films 

Pope, J. Chem. Phys. 1963, 38, 2042; Tang, Appl. Phys. LeI. 1987, 51, 913; Baldo, Nature 1998, 395, 151; Walzer, Chem. Rev. 2007, 107, 1233.

From Mono- to Mul9layer OLEDs

348

• to increase their efficiency OLEDs evolved from monolayer, to bilayer, into mul+layer devices
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OLED Displays
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• individual OLEDs emit red, green and blue light together crea9ng one colour-tunable pixel 
• every single OLED is driven by its own thin-film transistor 
• the whole device structure is encapsulated to ensure longterm stability

• OLEDs are already commercialized in the form of TV, laptop, and smartphone displays
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